South Platte River - Northern Project Renewable Water Supply

Planning and Operations Model Update

February 3, 2015

Northern Project Renewable Water Supply

- Renewable water supply for portions of Arapahoe, Douglas, and Elbert Counties (Denver SE Metro area)
- Supply currently met largely with deep non-tributary wells in the Denver/Dawson, Arapahoe, and Laramie-Fox Hills Aquifers
- ACWWA demand expected to double by 2040 and ECCV demand expected to increase by 15% by 2022
- New renewable supply (S. Platte Basin) obtained from:
 - Senior mutual ditch company rights
 - Junior water rights
 - Recharge and augmentation of alluvial wells

Northern Project Modeling

- Only modeling our operations
- Approximately \$40 million to be committed this year based on results of model
- Sizing of infrastructure
 - Recharge facilities
 - Pipeline sizing
 - Reservoir location and sizing
- Evaluation of water rights
- Evaluation of possible water court decisions
- Groundwater accounting tool

Sources of Supply and System Demands

Movement of Supply UP South Platte River

Ideas to Model Exchanges

- Run the river backwards
 - Confusing
 - Credits and reservoir releases propagate downstream
- Parallel reaches running upstream and downstream
 - Difficult to control diversion and propagation between reaches
 - Exchange potential varies between reaches
 - Outflows don't solve until upstream diversions solve chicken or egg problem
- Pipeline Object
 - Requires 1 object for every combination of reach to reach
- Diversion from reaches and rule-based Slot Inflow

Modeling Exchanges

Zoom-In of Beebe Draw Alluvial Aquifer

Pumping Depletions and Recharge Accretions

- 1. Fach well has a decreed URF that determines depletions owed to Beebe Seep Canal
- 2. Each recharge pond and recharge canal has a URF that determines accretions to Beebe Seep Canal
- 1. All pumping depletions must be replaced to Beebe Seep Canal (in time and place)
- Senior pumping rights must not be injured (aguifer drawdown)
- 1. Lochbuie stipulation wells
- 2. Re-timing to smooth out summer
- 3. Re-timing to smooth out wet/dry year
- 4. Treatment filtration credit

URF Calculations

			URF	>														
			7.05	16.34	12.59	8.69	6.50	5.21	4.35	3.74	3.27	2.89	2.57	2.29	2.06	1.85	1.67	1.5
BOM Day	Pumping (AF)	Depletion (AF)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1/1/2015	104.0	7.33	7.3															
2/1/2015	52.0	20.65	3.7	17.0														
3/1/2015	76.0	26.94	5.4	8.5	13.1													
4/1/2015	13.0	28.92	0.9	12.4	6.5	9.0												
5/1/2015	0.0	22.97	0.0	2.1	9.6	4.5	6.8											
6/1/2015	0.0	17.04	0.0	0.0	1.6	6.6	3.4	5.4										
7/1/2015	25.0	15.07	1.8	0.0	0.0	1.1	4.9	2.7	4.5									
8/1/2015	120.0	23.50	8.5	4.1	0.0	0.0	0.8	4.0	2.3	3.9					•			
9/1/2015	0.0	32.08	0.0	19.6	3.1	0.0	0.0	0.7	3.3	1.9	3.4			O K				
10/1/2015	84.0	31.31	5.9	0.0	15.1	2.2	0.0	0.0	0.6	2.8	1.7	3.0		W)				
11/1/2015	30.0	35.04	2.1	13.7	0.0	10.4	1.6	0.0	0.0	0.5	2,5	1.		RF				
12/1/2015	109.0	38.60	7.7	4.9	10.6	0.0	7.8	1.3	0.0	0.0	U	W	1.3	2.4				
1/1/2016	104.0	49.21	7.3	17.8	3.8	7.3	0.0	6.2	1.1	0.	0.0	0.4	2.0	1.2	2.1			
2/1/2016	52.0	53.68	3.7	17.0	13.7	2.6	5.5	0.0	2	.9	0.0	0.0	0.3	1.7	1.1	1.9		
3/1/2016	76.0	52.61	5.4	8.5	13.1	9.5	2.0	4.	0	.5	0.8	0.0	0.0	0.3	1.6	1.0	1.7	
4/1/2016	13.0	49.98	0.9	12.4	6.5	9.0	7	1.6	3.	0.0	3.9	0.7	0.0	0.0	0.3	1.4	0.9	1
5/1/2016	0.0	40.91	0.0	2.1	9.6	4.5	6	5.7	1.3	3.1	0.0	3.5	0.6	0.0	0.0	0.2	1.3	0
6/1/2016	0.0	32.66	0.0	0.0	1.0	6	3.4	5.4	4.7	1.1	2.7	0.0	3.1	0.6	0.0	0.0	0.2	1
7/1/2016	25.0	28.86	1.8	0.0	0		4.9	2.7	4.5	4.1	1.0	2.4	0.0	2.8	0.5	0.0	0.0	0
8/1/2016	120.0	35.77	8.5	4.		0.0	0.8	4.0	2.3	3.9	3.6	0.9	2.2	0.0	2.5	0.5	0.0	0
9/1/2016	0.0	43.06	0.0	19.6	3.1	0.0	0.0	0.7	3.3	1.9	3.4	3.1	0.8	1.9	0.0	2.2	0.4	0
10/1/2016	84.0	41.	0.0 5.9	U.U	15.1	2.2	0.0	0.0	0.6	2.8	1.7	3.0	2.8	0.7	1.7	0.0	2.0	0
11/1/2016	30.0	43 2	2.1	13.7	0.0	10.4	1.6	0.0	0.0	0.5	2.5	1.5	2.7	2.5	0.6	1.6	0.0	1
12/1/2016	109.0	5.	7.7	4.9	10.6	0.0	7.8	1.3	0.0	0.0	0.4	2.2	1.3	2.4	2.2	0.6	1.4	0
1/1/2017	104.0	50.47	7.3	17.8	3.8	7.3	0.0	6.2	1.1	0.0	0.0	0.4	2.0	1.2	2.1	2.0	0.5	1
2/1/2017	52.0	60.25	3.7	17.0	13.7	2.6	5.5	0.0	5.2	0.9	0.0	0.0	0.3	1.7	1.1	1.9	1.8	0
3/1/2017	76.0	58.57	5.4	8.5	13.1	9.5	2.0	4.4	0.0	4.5	0.8	0.0	0.0	0.3	1.6	1.0	1.7	1
4/1/2017	13.0	55.40	0.9	12.4	6.5	9.0	7.1	1.6	3.7	0.0	3.9	0.7	0.0	0.0	0.3	1.4	0.9	1
5/1/2017	0.0	45.84	0.0	2.1	9.6	4.5	6.8	5.7	1.3	3.1	0.0	3.5	0.6	0.0	0.0	0.2	1.3	0
6/1/2017	0.0	37.15	0.0	0.0	1.6	6.6	3.4	5.4	4.7	1.1	2.7	0.0	3.1	0.6	0.0	0.0	0.2	1
7/1/2017	25.0	32.95	1.8	0.0	0.0	1.1	4.9	2.7	4.5	4.1	1.0	2.4	0.0	2.8	0.5	0.0	0.0	0
8/1/2017	120.0	39.51	8.5	4.1	0.0	0.0	0.8	4.0	2.3	3.9	3.6	0.9	2.2	0.0	2.5	0.5	0.0	0
9/1/2017	0.0	46.48	0.0	19.6	3.1	0.0	0.0	0.7	3.3	1.9	3.4	3.1	0.8	1.9	0.0	2.2	0.4	0
10/1/2017	84.0	44.30	5.9	0.0	15.1	2.2	0.0	0.0	0.6	2.8	1.7	3.0	2.8	0.7	1.7	0.0	2.0	0
11/1/2017	30.0	46.79	2.1	13.7	0.0	10.4	1.6	0.0	0.0	0.5	2.5	1.5	2.7	2.5	0.6	1.6	0.0	1
12/1/2017	109.0	49.25	7.7	4.9	10.6	0.0	7.8	1.3	0.0	0.0	0.4	2.2	1.3	2.4	2.2	0.6	1.4	0
1/1/2018	104.0	58.88	7.3	17.8	3.8	7.3	0.0	6.2	1.1	0.0	0.0	0.4	2.0	1.2	2.1	2.0	0.5	1

Return Flow Methods

Return Flow Methods

Recharge Pond or Well URF

Return Flow Methods

Net Accretions and Depletions

Net depletions

Pumping Depletions

15,42 P 0.00 P -66.79 A -82.21 R 0.00 0.00 R 4-2008 -68.39 A -82.87 R 0.00 R 14,48 P 0.00 05-2008 -68.47 A -83.00 R 0.00 R 14.53 P 0.00 14.52 P 06-2008 0.00 P -68.78 A -83.30 R 0.00 R 07-20 0.00 P -68.91 A 14.27 P -83.18 R 0.00 m 0.00 R 0.00 P -69.13 A -83.24 R 0.00 R 14.11 P 0.00 09-2008 -69.36 A -83.64 R 0.00 m 0.00 R 14.28 P 0.00 P 10-2008 0.00 P -69.48 A -83.61 R 0.00 0.00 R 14.12 P 11-2008 0.00 P -68.48 A -75.90 R 0.00 m 0.00 R 7.41 P 12-2008 0.00 P -71.89 A -89.88 R 0.00 m 0.00 R 17.99 P 01-2009 19.95 P -50.62 A -94.16 R 0.00 m 0.00 R 23.59 P 02-2009 0.00 P -69.59 A -88.48 R 0.00 m 0.00 R 18,88 P 03-2009 0.00 P -69.85 A -82.71 R 0.00 0.00 R 12.86 P -84.99 R 04-2009 0.00 P -71.20 A 0.00 m 0.00 R 13.80 P 05-2009 0.00 P -71.11 A -85.58 R 0.00 0.00 R 14.47 P 06-2009 0.00 P -71.37 A -86.06 R 0.00 0.00 R 14.69 P 07-2009 -71.48 A 0.00 R 0.00 P -86.04 R 0.00 14.55 P -71.71 A 08-2009 0.00 P -86.16 R 0.00 R 14,45 P -71.96 A 09-2009 0.00 P -86.63 R 0.00 0.00 R 14.67 P 10-2009 0.00 P -72.10 A -86.63 R 0.00 R 14.54 P 0.00 11-2009 0.00 P -71.07 A -78.66 R 0.00 m 0.00 R 7.60 P -74.29 A -91.15 R 0.00 R 12-2009 0.00 P 0.00 16.86 P 01-2010 21.91 P -51.19 A -94.91 R 0.00 m 0.00 R 21.82 P 02-2010 0.00 P -72.29 A -90.11 R 0.00 R 17.82 P 03-2010 0.00 P -72.44 A -84.67 R 0.00 0.00 R 12.23 P 13.74 P 04-2010 0.00 P -73.83 A -87.56 R 0.00 m 0.00 R 0.00 P -73.67 A -88.35 R 0.00 R 14.68 P 05-2010 0.00 -73.92 A -88.91 R 14.99 P 06-2010 0.00 P 0.00 m 0.00 R 0.00 P -74.04 A 07-2010 -88.95 R 0.00 R 14.90 P 08-2010 0.00 P

Recharge accretions

